1) Suppose that we have four observations, for which we compute a
dissimilarity matrix, given by
⎡
⎢
⎢
⎣
0.3 0.4 0.7
0.3 0.5 0.8
0.4 0.5 0.45
0.7 0.8 0.45
⎤
⎥
⎥
⎦.
For instance, the dissimilarity between the first and second observations is 0.3, and the dissimilarity between the second and fourth
observations is 0.8.
(a) On the basis of this dissimilarity matrix, sketch the dendrogram
that results from hierarchically clustering these four observations using complete linkage. Be sure to indicate on the plot the
height at which each fusion occurs, as well as the observations
corresponding to each leaf in the dendrogram.
(b) Repeat (a), this time using single linkage clustering.
(c) Suppose that we cut the dendogram obtained in (a) such that
two clusters result. Which observations are in each cluster?
(d) Suppose that we cut the dendogram obtained in (b) such that
two clusters result. Which observations are in each cluster?
(e) It is mentioned in the chapter that at each fusion in the dendrogram, the position of the two clusters being fused can be
swapped without changing the meaning of the dendrogram. Draw
a dendrogram that is equivalent to the dendrogram in (a), for
which two or more of the leaves are repositioned, but for which
the meaning of the dendrogram is the same..
2) In this problem, you will perform K-means clustering manually, with
K = 2, on a small example with n = 6 observations and p = 2
features. The observations are as follows.
Obs. X1 X2
1 1 4
2 1 3
3 0 4
4 5 1
5 6 2
6 4 0
(a) Plot the observations.
(b) Randomly assign a cluster label to each observation. You can
use the sample() command in R to do this. Report the cluster
labels for each observation.
(c) Compute the centroid for each cluster.
(d) Assign each observation to the centroid to which it is closest, in
terms of Euclidean distance. Report the cluster labels for each
observation.
(e) Repeat (c) and (d) until the answers obtained stop changing.
(f) In your plot from (a), color the observations according to the
cluster labels obtained.
3) Suppose that for a particular data set, we perform hierarchical clustering using single linkage and using complete linkage. We obtain two
dendrograms.
(a) At a certain point on the single linkage dendrogram, the clusters {1, 2, 3} and {4, 5} fuse. On the complete linkage dendrogram, the clusters {1, 2, 3} and {4, 5} also fuse at a certain point.
Which fusion will occur higher on the tree, or will they fuse at
the same height, or is there not enough information to tell?
(b) At a certain point on the single linkage dendrogram, the clusters
{5} and {6} fuse. On the complete linkage dendrogram, the clusters {5} and {6} also fuse at a certain point. Which fusion will
occur higher on the tree, or will they fuse at the same height, or
is there not enough information to tell?
4) In this problem, you will generate simulated data, and then perform
PCA and K-means clustering on the data.
(a) Generate a simulated data set with 20 observations in each of
three classes (i.e. 60 observations total), and 50 variables.
Hint: There are a number of functions in R that you can use to
generate data. One example is the rnorm() function; runif() is
another option. Be sure to add a mean shift to the observations
in each class so that there are three distinct classes.
(b) Perform PCA on the 60 observations and plot the first two principal component score vectors. Use a different color to indicate
the observations in each of the three classes. If the three classes
appear separated in this plot, then continue on to part
(c). If
not, then return to part (a) and modify the simulation so that
there is greater separation between the three classes. Do not
continue to part (c) until the three classes show at least some
separation in the first two principal component score vectors.
(c) Perform K-means clustering of the observations with K = 3.
How well do the clusters that you obtained in K-means clustering compare to the true class labels?
Hint: You can use the table() function in R to compare the true
class labels to the class labels obtained by clustering. Be careful
how you interpret the results: K-means clustering will arbitrarily
number the clusters, so you cannot simply check whether the true
class labels and clustering labels are the same.
(d) Perform K-means clustering with K = 2. Describe your results.
(e) Now perform K-means clustering with K = 4, and describe your
results.
(f) Now perform K-means clustering with K = 3 on the first two
principal component score vectors, rather than on the raw data.
That is, perform K-means clustering on the 60 × 2 matrix of
which the first column is the first principal component score
vector, and the second column is the second principal component
score vector. Comment on the results.
(g) Using the scale() function, perform K-means clustering with
K = 3 on the data after scaling each variable to have standard
deviation one. How do these results compare to those obtained
in (b)? Explain.
Submit a .doc file. Remember to include the following
* Original questions, answers, and justifications
* R script and related outputs
Place this order or similar order and get an amazing discount. USE Discount code “GET20” for 20% discount